Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 185: 110238, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35430492

RESUMO

Zirconia was investigated as a radiation-resistant support for radium and actinium aqueous ion separations. Acetate and total metal ion concentrations were experimentally evaluated as factors that could affect retention using La and Ba surrogates. Pseudo-second order rate constants were derived and the uptake of La was determined to be endothermic. Elution profiles containing Ba, La, 228Ra, 228Ac, and 212Pb are presented and discussed.


Assuntos
Actínio , Rádio (Elemento) , Rádio (Elemento)/análise , Zircônio
2.
ACS Cent Sci ; 7(11): 1908-1918, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34841061

RESUMO

Solvent extraction is used widely for chemical separations and environmental remediation. Although the kinetics and efficiency of this process rely upon the formation of ion-extractant complexes, it has proven challenging to identify the location of ion-extractant complexation within the solution and its impact on the separation. Here, we use tensiometry and X-ray scattering to characterize the surface of aqueous solutions of lanthanide chlorides and the water-soluble extractant bis(2-ethylhexyl) phosphoric acid (HDEHP), in the absence of a coexisting organic solvent. These studies restrict ion-extractant interactions to the aqueous phase and its liquid-vapor interface, allowing us to explore the consequences that one or the other is the location of ion-extractant complexation. Unexpectedly, we find that light lanthanides preferentially occupy the liquid-vapor interface. This contradicts our expectation that heavy lanthanides should have a higher interfacial density since they are preferentially extracted by HDEHP in solvent extraction processes. These results reveal the antagonistic role played by ion-extractant complexation within the aqueous phase and clarify the advantages of complexation at the interface. Extractants in common use are often soluble in water, in addition to their organic phase solubility, and similar effects to those described here are expected to be relevant to a variety of separations processes.

4.
Sci Rep ; 11(1): 13292, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168236

RESUMO

A new process was developed to recover high specific activity (no carrier added) 99Mo from electron-accelerator irradiated U3O8 or uranyl sulfate targets. The process leverages a novel solvent extraction scheme to recover Mo using di(2-ethylhexyl) phosphoric acid following uranium and transuranics removal with tri-n-butyl phosphate. An anion-exchange concentration column step provides a final purification, generating pure 99Mo intended for making 99Mo/99mTc generators. The process was demonstrated with irradiated uranium targets resulting in more than 95% 99Mo recovery and without presence of fission products or actinides in the product.

6.
Sci Rep ; 9(1): 12842, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492918

RESUMO

Expanded low-carbon baseload power production through the use of nuclear fission can be enabled by recycling long-lived actinide isotopes within the nuclear fuel cycle. This approach provides the benefits of (a) more completely utilizing the energy potential of mined uranium, (b) reducing the footprint of nuclear geological repositories, and (c) reducing the time required for the radiotoxicity of the disposed waste to decrease to the level of uranium ore from one hundred thousand years to a few hundred years. A key step in achieving this goal is the separation of long-lived isotopes of americium (Am) and curium (Cm) for recycle into fast reactors. To achieve this goal, a novel process was successfully demonstrated on a laboratory scale using a bank of 1.25-cm centrifugal contactors, fabricated by additive manufacturing, and a simulant containing the major fission product elements. Americium and Cm were separated from the lanthanides with over 99.9% completion. The sum of the impurities of the Am/Cm product stream using the simulated raffinate was found to be 3.2 × 10-3 g/L. The process performance was validated using a genuine high burnup used nuclear fuel raffinate in a batch regime. Separation factors of nearly 100 for 154Eu over 241Am were achieved. All these results indicate the process scalability to an engineering scale.

7.
Appl Radiat Isot ; 131: 77-82, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29175143

RESUMO

The photonuclear production of no-carrier-added (NCA) 47Sc from solid NatTiO2 and the subsequent chemical processing and purification have been developed. Scandium-47 was produced by the 48Ti(γ,p)47Sc reaction with Bremsstrahlung photons produced from the braking of electrons in a high-Z (W or Ta) convertor. Production yields were simulated with the PHITS code (Particle and Heavy Ion Transport-code System) and compared to experimental results. Irradiated TiO2 targets were dissolved in fuming H2SO4 in the presence of Na2SO4 and 47Sc was purified using the commercially available Eichrom DGA resin. Typical 47Sc recovery yields were >90% with excellent specific activity for small batches (<185 MBq batches).

8.
Inorg Chem ; 55(24): 12675-12685, 2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27989209

RESUMO

Complexes of the trivalent lanthanides and Am with di-2-ethylhexylphosphoric acid (HDEHP) dissolved in an aliphatic diluent were probed with UV-vis, X-ray absorption fine structure, and time-resolved fluorescence spectroscopy while the water concentration was determined by Karl Fischer titrations. In particular, our work focuses on the Nd-hypersensitive UV-vis absorbance region to identify the cause of changing absorbance values at 570 and 583 nm in relation to the pseudooctahedral Nd environment when coordinated with three HDEHP dimers. In contrast to recently reported interpretations, we establish that while impurities have an effect on this electronic transition band, a high water content can cause distortion of the pseudooctahedral symmetry of the six-coordinate Nd, resembling the reported spectra of the seven-coordinate Nd compounds. Extended X-ray absorption fine structure analysis of the Nd in high-concentration HDEHP solutions also points to an increase in the coordination number from 6 to 7. The spectral behavior of other lanthanides (Pr, Ho, Sm, and Er) and AmIII as a function of the HDEHP concentration suggests that water coordination with the metal likely depends on the metal's effective charge. Fluorescence data using lifetime studies and excitation and emission spectra support the inclusion of water in the Eu coordination sphere. Further, the role of the effective charge was confirmed by a comparison of the Gibbs free energies of six- and seven-coordinate La-HDEHP-H2O and Lu-HDEHP-H2O complexes using density functional theory. In contrast, HEH[EHP], the phosphonic acid analogue of HDEHP, exhibits a smaller capacity for water, and the electronic absorption spectra of Nd or Am appear to be unchanged, although the Pr spectra show a noticeable change in intensity as a function of the water content. Electronic absorption extinction coefficients of AmIII, NdIII, PrIII, SmIII, ErIII, and HoIII as a function of the HDEHP concentration are reported for the first time.

9.
Dalton Trans ; 43(17): 6446-54, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24619154

RESUMO

The aqueous complexation of Nd(III) and Am(III) with anions of citrate was studied by potentiometry, absorption spectrophotometry, microcalorimetry, and X-ray absorption fine structure (XAFS). Using potentiometric titration data fitting the metal-ligand (L) complexes that were identified for Nd(III) were NdHL, NdL, NdHL2, and NdL2; a review of trivalent metal-citrate complexes is also included. Stability constants for these complexes were calculated from potentiometric and spectrophotometric titrations. Microcalorimetric results concluded that the entropy term of complex formation is much more dominant than the enthalpy. XAFS results showed a dependence in the Debye-Waller factor that indicated Nd(iii)-citrate complexation over the pH range of 1.56-6.12.

10.
Inorg Chem ; 51(14): 7741-8, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22738207

RESUMO

Aqueous complexation of Th(IV), U(IV), Np(IV), Pu(III/IV), and Ce(III/IV) with DTPA was studied by potentiometry, absorption spectrophotometry, and cyclic voltammetry at 1 M ionic strength and 25 °C. The stability constants for the 1:1 complex of each trivalent and tetravalent metal were calculated. From the potentiometric data, we report stability constant values for Ce(III)DTPA, Ce(III)HDTPA, and Th(IV)DTPA of log ß(101) = 20.01 ± 0.02, log ß(111) = 22.0 ± 0.2, and log ß(101) = 29.6 ± 1, respectively. From the absorption spectrophotometry data, we report stability constant values for U(IV)DTPA, Np(IV)DTPA, and Pu(IV)DTPA of log ß(101) = 31.8 ± 0.1, 32.3 ± 0.1, and 33.67 ± 0.02, respectively. From the cyclic voltammetry data, we report stability constant values for Ce(IV) and Pu(III) of log ß(101) = 34.04 ± 0.04 and 20.58 ± 0.04, respectively. The values obtained in this work are compared and discussed with respect to the ionic radius of each cationic metal.


Assuntos
Compostos Organometálicos/química , Cério/química , Técnicas Eletroquímicas , Netúnio/química , Compostos Organometálicos/síntese química , Ácido Pentético/química , Plutônio/química , Termodinâmica , Tório/química , Urânio/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...